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Cieľom tejto práce bolo navrhnúť riešenie automatickej segmentácie pľúcnych in-

fekcií na CT snímkach. V prvej časti sme analyzovali existujúce štúdie a metódy

riešenia tohto problému. Navrhované riešenie sme vo veľkej miere zakladali na

prácach s podobným zameraním a známych architektúrach v tejto oblasti. Orezali

sme vstupné dáta pomocou natrénovaného 2D U-Net modelu, tak aby na výs-

tupe boli zachytené len pľúca a tým sme zjednodušili proces trénovania. Veľkosť

datasetu sme zredukovali o 58,9%. Vysokú mieru rozdielu jednotlivých tried pri

segmentácii sme adresovali našou modifikovanou stratovou funkciou DiceDiceLoss,

ktorá minimalizovala počet falošne pozitívnych a falošne negatívnych tried pri

výstupnej segmentácií. Stratovú funkciu sme navhrli, tak aby sa dala modifiko-

vať podľa datasetu a prítomnej miery nerovnováhy segmentačných tried. Navrhli

sme prototyp založený na architektúre 3D U-Net v základnej konfigurácií a tento

natrénovaný model sme vyhodnotili pomocou trojitej krížovej validácie. Výsledky

sme porovnali voči DiceFocalLoss, kde sme dosiahli signifikantne lepšie výsledky

na metrike Dice.
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This work aimed to design a solution for the automatic segmentation of pulmonary

infections in CT images. In the first part, we analyzed existing studies and methods

to solve this particular problem. We based our proposed solution on work with

a similar focus and well-known architectures in this area. We cropped the input

images using a trained 2D U-Net model, so that only the lungs are captured on

the output, thus simplifying the training process. We have reduced the size of

the dataset by 58.9%. We addressed the imbalance of segmentation classes during

segmentation by the modified loss function DiceDiceLoss, which minimized the

number of false-positive and false-negative classes in output segmentation. We

designed the loss function so that it could be modified according to the dataset and

the present degree of imbalance of segmentation classes. We designed a prototype

based on the 3D U-Net architecture in the basic configuration and evaluated this

trained model using three-fold cross-validation. We compared the results against

DiceFocalLoss achieving significantly better performance on the Dice metric.







Contents

1 Introduction 1

1.1 COVID-19 Segmentation Challenge . . . . . . . . . . . . . . . . . . 3

2 Analysis 5

2.1 Traditional Approach of Computer Vision . . . . . . . . . . . . . . 5

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Influential Architectures for Segmentation Tasks . . . . . . . . . . . 9

2.3.1 Fully Convolutional Network architecture . . . . . . . . . . . 9

2.3.2 U-Net architecture . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2.1 3D-Unet architecture . . . . . . . . . . . . . . . . . 11

2.3.2.2 UNet++ architecture . . . . . . . . . . . . . . . . 12

2.3.3 V-Net Architecture . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Recent Work: State Of The Art . . . . . . . . . . . . . . . . . . . . 16

2.4.1 3D U-Net Architecture with augmentation pipeline[33] . . . 16

2.4.2 Improved V-Net: VB-Net Architecture[41] . . . . . . . . . . 19

2.4.3 Using an Attention Modules: Inf-Net Architecture[14] . . . . 19

2.4.4 COVID-SegNet Architecture[47] . . . . . . . . . . . . . . . . 22

2.4.5 Improved U-Net: the UNet++ Architecture[18] . . . . . . . 23

2.4.6 An Ensable Using the nnUNet Architecture[17] . . . . . . . 24

xv



Contents

2.4.7 Challenge Submissions: Top Performers . . . . . . . . . . . . 25

2.4.7.1 Rank 1: "Semi-supervised Method for COVID-19

Lung CT Lesion Segmentation" . . . . . . . . . . . 25

2.4.7.2 Rank 2: “nnU-Net for Covid Segmentation” . . . . 26

2.4.7.3 Rank 3: "Automated Ensemble Modeling for COVID-

19 CT Lesion Segmentation" . . . . . . . . . . . . 26

3 Proposed solution 29

3.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 COVID-19 Dataset - Segmentation Challenge . . . . . . . . . . . . 30

3.4 Dataset Cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 2D Lungs Dataset for Lungs Segmentation . . . . . . . . . . 31

3.4.2 Method: using U-Net Model . . . . . . . . . . . . . . . . . . 32

3.4.3 Training 2D U-Net . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Using 3D Lesion Segmentation . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Dataset Augmentation of COVID19 Dataset . . . . . . . . . 35

3.5.2 Method: using Basic 3D Unet . . . . . . . . . . . . . . . . . 36

3.5.3 Loss Function Modification . . . . . . . . . . . . . . . . . . 37

3.5.3.1 Training With Cropped Dataset . . . . . . . . . . . 39

3.5.4 Further Addressing the Class Imbalance . . . . . . . . . . . 41

3.5.4.1 Balanced Dataset Splits . . . . . . . . . . . . . . . 44

4 Evaluation 47

4.0.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.0.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 48

4.0.3 Quantitative Evalution . . . . . . . . . . . . . . . . . . . . . 48

4.0.4 Test Set Evaluation . . . . . . . . . . . . . . . . . . . . . . . 49

xvi



Contents

4.0.5 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion 55

A Additional Results A-1

B Source code documentation B-1

C Description of digital parts of thesis C-1

D Thesis Plan D-1

D.1 Winter 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1

D.2 Summer 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1

D.3 Winter 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-2

D.4 Summer 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-2

D.5 Plan Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-3

xvii



Contents

xviii



Chapter 1

Introduction

Many challenges in medicine have risen recently. The need to scale healthcare is

more necessary than ever. The recent COVID-19 pandemic shows how much more

work there is to be done in terms of speeding up diagnostics. At the end of January

2020 WHO organization declared COVID-19 as the Public Health Emergency of

International Concern [45]. As of 3 December 2021, the WHO reported 263,563,622

worldwide cases and 5,232,562 confirmed deaths and administrated 7,864,123,038

doses of vaccine[45]. Reverse-transcription polymerase chain reaction (RT-PCR)

became one of the widely used methods to detect viral nucleotides from speci-

mens obtained with the oropharyngeal swab, nasopharyngeal swab, bronchoalve-

olar lavage, or tracheal aspirate [4]. As COVID-19 disease has infected millions of

patients and produced an enormous number of datasets such as numerical data of

pandemic, CT scans, and other modalities; see Fig. 1.1. It turns out that a CT

scan is a reliable method of COVID-19 diagnostics with a high prediction rate of

a disease [39, 1]. On the other hand, this method requires a radiology doctor to

examine findings and make the judgment on whether a patient is sick or healthy.

Although we can’t replace doctors with a deep learning model, we can help to

1



Chapter 1. Introduction

Figure 1.1: Topology of Medical Imaging Modalities [3].

identify regions of interest to fasten examinations of these findings.

Our focus was primarily on lesion segmentation inside the lungs. The goal is

to provide quality healthcare to the masses with help of automation tools such

as machine learning. Hospitals already gather data on diagnostics and patient

treatments. We can take advantage of these datasets and provide supporting au-

tomation tools for doctors in specific fields. Development of such tools quickly as

possible using existing work as a starting point is the key to helping as soon as

possible. Such tools should be generally applicable to a range of patients with sim-

ilar conditions. Deep learning has recently shown its potential in medical imaging

analysis. We examined deep learning models and the state of art approaches to

better understand them. These models are a combination of numerous parame-

ters and components which can be modified to achieve better results on a given

task. We run experiments to benchmark our modifications against state-of-the-art

models.

Such help can be offered with help of computer vision and deep learning methods

to guide doctors’ attention on specific regions of CT scans where machine learning

models predicted a higher probability of disease occurrence. Medical imaging

2
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analysis as the field is being heavily improved upon as [42] is suggesting.

1.1 COVID-19 Segmentation Challenge

The widespread disease also generated datasets and competitions in which we par-

ticipated. Common imaging modalities for evaluation of COVID-19 infections are

chest radiographs (CT), chest computerized tomography, and ultrasound which is

used less often. The most accurate modality that identifies infection is chest CT [5,

50]. Frequent findings in the chest of patients were ground-glass opacities (GGO)

and pneumonic consolidations [38]. COVID-19 challenge[38] brought access to 199

CT images annotated by experts which we used during building our prototype

solution. Over a thousand teams registered for the challenge and 98 completed it

through the test phase.

This allowed participants and us to utilize quality data as the number of larger

datasets is not publicly accessible and available.

3
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Chapter 2

Analysis

Modern image segmentation methods build upon the foundation laid out by con-

volutional neural networks (CNN) in 2012. In past years CNNs overtake the image

segmentation field yielding better results. We focused on relevant publications in

this research area and provide important and influential works that shaped the

field.

2.1 Traditional Approach of Computer Vision

To betterx understand and appreciate modern methods we should compare them

with their predecessors.

These methods can be marked as descriptive analysis. As it involves defining

an understandable mathematical model which describes the event that we wish

to observe. A further collection of data about the process, forming hypotheses

according to the data, and validating these hypotheses through comparing results

of the model with real outcomes[6].

5
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Figure 2.1: Example of using watershed transform for segmenting bubbles [43].

This requires expertise and a good understanding of a problem. As an architect

of such a model must be well informed about a domain of a problem we can safely

assume that it is also time demanding. This step was fully automated as machine

learning models firstly appeared and shifted focus more on datasets than carefully

engineering mathematical models by hand.

Traditional computer vision employs morphological operations, applying adaptive

thresholds, and watershed transform (Fig. 2.1 to form a segmentation algorithm

for specific input images. These operations are primarily applicable to gray-scale

images and require careful tuning of parameters to achieve the desired result.

Active Contours In 1998 Kass et al. introduced “Snakes: Active Contour Mod-

els”[21] where they proposed an algorithm for finding the contours of an object.

Using an edge-detector that depends on the gradient of the image. Similar work

[9, 8, 30] used gradient-based technique to detect the contours of an object.

These algorithms are parametric and parameters must be adjusted to specific input

images. Requires testing and trying before useful results are obtained.

6
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2.2 Deep Learning

What is deep learning? According to authors L. Deng and D. Yu deep learning is

a class of machine learning algorithms. Firstly, uses a cascade of multiple layers

of nonlinear processing units for feature extraction and transformation where each

successive layer uses the output from the previous layer as input. Secondly, learns

multiple levels of representation that correspond to different levels of abstraction

[12].

Deep learning involves searching for rules that describe a phenomenon and forming

a predictive model that is trying to minimize the error between the real and the

predicted result [6].

Convolutional Neural Networks (CNN) In 2012 breakthrough happened at

ImageNet Large Scale Visual Recognition Challenge where AlexNet[24], a convo-

lutional neural network won the competition by a huge margin. This started a

new generation of convolutional neural network designs and improvements and it

lasts until today. Machine learning as a field started to rise in recent years due

to accessibility to computation power primarily to cheaper graphic cards. Gener-

ally, convolutional neural networks (CNNs) mostly consist of convolutional layers,

nonlinear layers, and pooling layers. Convolutional layers apply convolution oper-

ation on input producing feature maps as an output. These feature maps contain

encoded information about the image or volume. Convolution operation involves

filters with size, padding, and stride which defines the output of convolution. Fil-

ters also called kernels can be thought of as weights in a multi-layer perceptron

neural network. This Convolution is defined by a rectangular size kernel for ex-

ample 3 ⇥ 3. With more filters come higher computational complexity and more

power is required. But in a high-level view convolution traverse input image or

volume and outputs feature maps. Nonlinear layers apply activation function on

7
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feature maps usually element-wise which enables modeling of non-linear functions.

Nwankpa et al. in 2018 [34] summarised numerous activation functions such as

ReLU, Sigmoid, leaky ReLU. Each activation function solves a different kinds of

problems during training. There are also domain-specific tasks that require tuning

the activation function to accomplish goals. Pooling layers replace the rectangular

neighborhood of values usually with max or mean values. These pooling opera-

tions are applied on feature maps to reduce their spatial dimension and reduce

computational complexity on further convolution layers. We demonstrated the

simplified version of basic convolutional network architecture in Fig. 2.2.

ResNet Architecture At the end of 2015, He et al. published an influenc-

ing paper about Deep Residual Learning for Image Recognition and introduced

ResNet architecture [15]. ResNet has been primarily used for classification tasks

but it was used in DeepLabV3[11] semantic segmentation model as a basis. As the

authors stated, deeper neural networks should in theory perform better as they

should better approximate the function describing the learned dataset. But they

empirically showed that deeper networks have a higher error rate than shallower

ones. This was previously solved by other techniques such as normalization and

Figure 2.2: Oversimplified version of the most basic operations in convolutional
neural networks. These basic operation in feature extraction part are often stacked
to increase feature extraction ability.

8
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dropout. Their solution did not increase the number of operations required.

They introduced skip connection as an answer to overcoming difficulties during the

training of deeper networks. Skip connection passed input from the previous layer

to end of the N-layer block summing with an output of N-layer block output and

passing it into activation function. This whole block with a skip connection is called

a residual block. The presented network architectures were composed of these

residual blocks and compared to so-called plain networks without skip connections.

They compared them on classification tasks and proved residual blocks indeed

increased the performance of the model without sacrificing performance. Skip

connections also helped shallower networks to converge faster. They used skipped

connection every three layers and created architecture ResNet-152 with a total of

152 layers and won 1st place at ILSVRC 2015.

2.3 Influential Architectures for Segmentation Tasks

2.3.1 Fully Convolutional Network architecture

Long et al. 2014 proposed Fully Convolutional Networks for semantic segmentation

(FCN) [27]. With the novelty of taking an image of arbitrary size as an input.

This paper proved that it is possible to train the model with convolutional layers

end to end and get state-of-the-art results. The ability to segment arbitrary input

image size was due to the replacement of flattening layers with 1⇥ 1 convolution

to perform segmentation. A convolutional layer is defined as a three-dimensional

array of size h ⇥ w ⇥ c where c is a number of color channels and h ⇥ w is the

spatial size of an image. It is assumed that convolutional networks are translation

invariant. This claim was challenged in a recent paper [22] and authors had shown

that convolutional networks encoded absolute spatial information of objects. This

9
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could be further analyzed from the perspective of dataset augmentation to create

more generalized models.

They also introduced transposed convolution referred to as deconvolution in the

paper for up-sampling. These layers can be learned too. The combination of finer

and coarser information resulted in higher quality segmentation due to additional

spatial information provided during up-sampling. Up-sampling process benefited

from previous feature maps which led to the model making predictions with respect

to global structure.

2.3.2 U-Net architecture

Ronneberger et al. in 2015 introduced U-net convolutional network for biomed-

ical image segmentation which laid the foundation for future work in the image

segmentation field [37]. U-Net architecture consisted of two parts, a contracting

path, and an expansive path; see Fig. 2.3. The contracting path involved a double

3 ⇥ 3 convolution followed by a ReLU activation function followed by 2 ⇥ 2 max

pooling layer with stride 2 and an increasing number of filters by a factor of two.

Each convolution layer was followed by the ReLU activation function. This basic

block was repeated four times. At the end of the contracting path was the final

3⇥3 convolution. The expansion path was composed by up-sampling of the feature

map followed by 2⇥2 convolution which halved the number of features every block

and concatenating with previous feature maps by skipped connections followed by

two 3⇥ 3 convolutions. An important step is to copy and crop feature maps from

contracting path blocks into expansion path blocks. This is called skipped con-

nection to introduce spatial information from previous layers and achieve better

up-sampling results. Final layer a 1⇥ 1 convolution mapped 64 feature vectors to

the number of output classes in this case task was binary classification therefore

10
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outputting the number of filters was 2. To train U-Net they used the so-called

energy function computed pixel-wise softmax over the final feature map combined

with a cross-entropy loss function.

Figure 2.3: Overview of U-Net architecture that influenced segmentation architec-
tures[37].

2.3.2.1 3D-Unet architecture

In 2016 Çiçek et al. [51] introduced 3D U-Net: Learning Dense Volumetric Seg-

mentation from Sparse Annotation and extended successful U-Net architecture for

a 3D volumetric dataset. They modified convolutions, max pooling from 2D to

3D; see Fig. 2.4. The Contracting path had four steps. Each layer consisted of

two 3 ⇥ 3 ⇥ 3 convolutions each followed by ReLU activation function, and then

2 ⇥ 2 ⇥ 2 max pooling with stride of 2. The expansion path similarly used two

2⇥2⇥2 convolutions by the stride of 2, followed by two 3⇥3⇥3 convolutions each

followed by ReLU. The last layer in the network did 1⇥ 1⇥ 1 convolution in order

to reduce the number of output channels to the number of output classes. They

also avoided bottlenecks by doubling the number of channels before max pooling

11
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operation. Batch normalization was used before each ReLU to speed up conver-

gence. The model trained on 2D annotated slices and performed segmentation on

3D 3D-Unet achieved performance equivalent to the 2D U-Net network with their

fully-automated setup in the Xenopus Kidney segmentation task.

Figure 2.4: Architectural overview of 3D-Unet network[51]. Based on origin 2D
UNet version of Ronneberger et al.[37]

2.3.2.2 UNet++ architecture

In 2018 Zhou et al. introduced new architecture called UNet++ for medical im-

age segmentation [49]. An encoder-decoder architecture with added dense skip

pathways reduced the gap between the feature maps of the encoder and decoder.

The main addition to U-Net architecture was the re-design of skipped connec-

tions between encoder-decoder; see Fig. 2.5. The main difference is in delivering

feature maps from encoder to decoder. The number of skipped connections row-

wise is referenced as semantic level. In U-Net they were cropped and copied,

in U-Net++ they were passed through additional convolution layers where each

12
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convolution is preceded by a concatenation layer that joined input with the cor-

responding up-sampled output of the lower dense block. Next, they proposed to

use deep supervision [25] which enabled their ability to operate the model in two

modes. An accurate mode and a fast mode. The accurate mode averages the

final segmentation branches. The fast mode chooses only one segmentation map

from segmentation branches. The selection of branch in fast mode is determined

by model pruning and speed gain. All convolutions used kernel size of 3 ⇥ 3 or

3⇥ 3⇥ 3 for 3D data. An Adam optimizer with a learning rate of 3e� 4 was used

during training. The model was trained with a loss function consisting of binary

cross-entropy and dice coefficient for each semantic level. In summary, UNet++

is different from U-Net in two major ways. First Unet++ has convolution lay-

ers between skipped pathways. And second Unet++ is using deep supervision to

fine-tune performance gains. They also benchmark the model against U-Net and

Wide U-net and UNet++ achieved an average IoU gain of 3.9 and 3.4 points over

others.

Figure 2.5: U-Net++ interconnected architecture overview[49].
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Figure 2.6: Architectural overview of V-Net[31] built upon foundation laid by
Ronneberger et al. [37] with UNet.
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2.3.3 V-Net Architecture

In 2016 Milletari et al. proposed a fully convolutional neural network for volumet-

ric medical image segmentation called V-Net [31]. V-Net addressed volumetric

segmentation because of its already huge interest in 2D segmentation tasks. The

v-Net design was inspired by U-Net architecture. The network was trained on MRI

prostate scans. All volumes had fixed size of 128 ⇥ 128 ⇥ 64 voxels and spatial

resolution of 1⇥ 1⇥ 1.5 mm.

The model consisted of two parts, a left part was divided into different stages, and

each stage contained one to three convolutional layers; see Fig. 2.6. Each stage

also learned residual function. They used kernel sizes of 5⇥5⇥5 voxels and reduced

resolution through 2⇥ 2⇥ 2 voxels wide convolution with stride 2. This resulted

in halved resolution. An activation function called PReLU is used throughout the

network. The right part of the network used transposed convolution operation

in order to increase the size of the inputs, as in the left part each input was

followed by one to three convolutional layers. The initial input of a stage also

received halved feature maps from previous layers; see orange lines in figure Fig.

2.6. Similar to the left also residual functions were learned in the convolutional

stages. Soft-max layer was used to output the probability of each voxel belonging

to either foreground or background class. They introduced a new loss function

based on the Dice similarity coefficient.
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2.4 Recent Work: State Of The Art

Publication Modality Architecture Loss Function Evaluation Metrics

Müller et al.[33] CTs, 3D 3D-Unet Categorical CE DSC, Spec., Sen.

Shan et al. [41] CTs, 3D VB-Net - DSC

Fan et al. [14] CTs, 2D Inf-Net Custom DSC, Sen., Spec., Prec.

Yan et al. [47] CTs, 3D COVID-SegNet Dice Loss + CE DSC, Sen., Prec.

Jin et al. [18] CTs, 3D U-Net++ Dice Loss AUC, Spec., Sen.

Table 2.1: Overview of important aspects of other publications. DSC denoting
Dice Similarity Coefficient, Spec. denoting Specificity, Sen. denoting Sensitivity,
Prec. denoting Precision, AUC denoting AUC over ROC. and CE denoting Cross-
Entropy.

Last year the number of publications has risen up due emergency of the global

pandemic COVID-19. We analyzed state-of-the-work in order to get useful insights

from these recent publications; see Table. 2.1.

All recent publications built upon well-known architectures, activation functions,

dataset augmentation, and evaluation metrics. The most prevalent architecture

was U-Net due to its simple design, customization, and solid performance across a

variety of tasks. The U-Net architecture was also used as a baseline in the grand

challenge [35]. U-Net inspired modifications UNet++ and V-Net. V-Net adjusted

U-Net architecture for 3D volumetric datasets where UNet++ modified architec-

ture to gain extra accuracy. The popular activation function is rectified linear unit

(ReLU). Next were evaluation metrics where dice similarity coefficient (DSC), sen-

sitivity, and specificity were primarily used. These metrics are commonly used in

the medical field.

2.4.1 3D U-Net Architecture with augmentation pipeline[33]

Müller et al. proposed standard 3D U-Net based solution with emphasis on data

augmentation pipeline [33]. They trained on a publicly available dataset [20] con-
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sisting of 20 CT COVID-19 CT volumes with annotated infection masks. Half of

the dataset had a resolution of 512 ⇥ 512 (Coronacases Initiative) and the other

half had 630 ⇥ 630 (Radiopaedia) with a number of slices by mean of 176. They

used 5-fold cross-validation on the dataset. There was no test, train, or validation

splitting due to the limited size of the dataset and no hyperparameter tuning after

validation/testing results. They choose standard 3D U-Net in order to minimize

the space of hyperparameters and focus on extensive data augmentation. In pre-

processing phase they clipped values of Hounsfield units (HU) to interval -1250 as

minimum and +250 which transformed all values lower than -1250 to -1250 and

bigger than +250 to 250 respectively. This clipping was possible only on half of

the dataset from Coronacases Initiative as the other half was already normalized

to grayscale range 0 to 255. They state that varying signal intensity drastically

influences the fitting process and model performance. In order to reduce the size,

they resampled all CT volumes to a target spacing of 1.58⇥ 1.58⇥ 2.70 resulting

in a median volume shape of 267⇥254⇥104 and a huge positive impact on model

performance. Authors pinpoint the batch generators package as an API for state-

of-the-art data augmentation in the medical domain. They implemented spatial

augmentation by mirroring, elastic deformations, rotations, and scaling; color aug-

mentation by brightness, contrast, and gamma alternations. And the last type of

augmentation was noise augmentation by adding Gaussian noise.

All data augmentation was performed on-the-fly on each image right before being

inputted into the model. To decrease the probability of generating the same aug-

mented image by applying the same augmentations each augmentation had a 15%

probability to be applied to each image. To decrease the risk of overfitting they

decided to slice the volume into smaller cuboid patches and forward randomly only

a single cropped patch from the image to the fitting process. Volumes were sliced

into patches of shape 160⇥160⇥80. For inference, they introduced overlap between
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patches of size 480⇥80⇥40 to increase prediction performance. After inference, all

patches were assembled into the original volume shape whilst overlapping regions

were averaged. The model architecture had kernel sizes of 3⇥ 3⇥ 3 with stride of

1⇥ 1⇥ 1, exception was up-sampling and downsampling (achieved via transposed

convolution) convolutions with kernel size of 2 ⇥ 2 ⇥ 2 with stride of 2 ⇥ 2 ⇥ 2;

see Fig. 2.7. The architecture had 32 feature maps at the highest resolution and

512 at its lowest. To fight strong bias in class distribution background - lungs -

infection as 89% - 9% - 1% respectively they used the sum of the Tversky index

and categorical cross-entropy as loss function. Adam optimization was used with

initial weight decay of 1e-3 with a dynamic learning rate. The maximum number

of epochs was 1000, but a single epoch was defined as an iteration over 150 training

batches. Three standard evaluation metrics were used: dice similarity coefficient,

sensitivity, and specificity. Results of infection segmentation were as follows DSC:

0.761, sensitivity: 0.730, specificity: 0.999. The authors arrived at the conclusion

that the model can be trained without overfitting on small datasets without novel

complex network architecture and achieve state-of-the-art performance.

Figure 2.7: Architectural overview of standard 3D U-Net architecture proposed by
Müller et al. with emphasis on data augmentation[33].
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2.4.2 Improved V-Net: VB-Net Architecture[41]

Shan et al. [41] proposed VB-Net a deep learning segmentation model processing

entire CT scans based on V-Net[18]. The model also estimated shapes and per-

centages of infection referred to as POI. The training set consists of 249 CT scans

and the test set was 300 CT scans of COVID-19 patients. Each CT scan was

from a different patient and data wasn’t augmented before training. There is a

bottle-neck structure in place designed as a stacked structure of 3 layers; see Fig.

2.8. The first layer uses 1⇥ 1⇥ 1, the second use 3⇥ 3⇥ 3 and the last 1⇥ 1⇥ 1

convolution kernels, where the first layer with 1⇥ 1⇥ 1 kernel reduces the number

of channels and feeds the data for a regular 3⇥ 3⇥ 3 kernel layer processing, and

then the channels of feature maps are restored by another 1 ⇥ 1 ⇥ 1 kernel layer.

VB-Net is more capable of dealing with large 3D volumetric data than traditional

V-Net due to reducing and combining feature map channels.

Evaluation metrics included dice similarity coefficients and the Pearson correlation

coefficient was used to measure linear dependence between POI and pneumonia

severity index (PSI).

They concluded that segmentation of infections through CT scans of patients

yielded high accuracy. The model achieved a 91.6% mean Dice similarity coef-

ficient on 300 testing samples.

2.4.3 Using an Attention Modules: Inf-Net Architecture[14]

Fan et al. proposed in their paper Inf-Net a deep neural network for segmentation of

CT slices [14]. They introduced also a semi-supervised version of Inf-Net trained on

unlabeled CT slices, but we are interested only in the former model. Inf-Net used

parallel partial decoder (PPD) and leveraged recurrent reverse attention modules;

see Fig. 2.9.
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Figure 2.8: VB-Net architecture overview proposed by Shan et al. [41]. The Down
and Up Blocks are modified version of V-Net blocks which they described as faster
due to 1⇥ 1⇥ 1 kernel size convolution layers that reduces number of channels.

The model was trained on 100 axial CT slices from 19 patients with annotations

of COVID infected regions. There was no additional dataset augmentation before

the training phase. The network used 3 important modules an Edge Attention

Module, Parallel Partial Decoder, and Reverse Attention Module. Edge Attention

Module learns edge-attention representation. Edges can provide useful informa-

tion for feature extraction [48]. This module produces an edge map that can be

compared to the ground truth mask. These terms were then used in the binary

cross-entropy loss function. The idea behind Parallel Partial Decoder (PPD) is

an aggregation of only high-level features because as Wu et al. [46] shown that

low-level features demand computational power due to high resolution and con-

tribute less to model performance. We want to emphasize that this is amplified

in volumetric data segmentation where data has usually a larger spatial size due

to more dimensional space. In the end output of PPD serves as guidance for RA

modules. The last module Reverse Attention is inspired by clinical practice in-

20



Chapter 2. Analysis

fection segmentation done by doctors via two steps. In the first step, a rough

location of infection is found and in the second step, the accurate procedure is

done in order to segment the infection by closer tissue inspection. A PPD acts in

this manner as a rough locator. Next, they defined custom loss function which is

a combination of weighted IoU loss, weighted binary cross-entropy loss, edge map

versus ground truth binary cross-entropy with the term from up-sampled side out-

puts. Dice similarity coefficient, specificity, sensitivity, and precision were used

as evaluation metrics during the benchmark. The model was compared to U-Net,

Attention-UNet, Gated-UNet, Dense-UNet, and U-Net++ and outperformed most

of them.

Figure 2.9: Architectural overview of Inf-Net [14]. Lower level features from the
top and also higher levels from the bottom are fed into higher-level features where
Reverse attention (RA) modules reside. The Partial parallel decoder (PPD) guides
the RA model to produce an accurate prediction on a given level of features. These
outputs are up-sampled from the higher level into lower levels and to the sigmoid
layer output.
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2.4.4 COVID-SegNet Architecture[47]

Yan et al. proposed COVID-SegNet a deep convolutional neural network with fea-

ture variation block (FV) and progressive atrous spatial pyramid pooling (PASPP)

block [47]. The model handles the segmentation of COVID infection as well as

lung segmentation. The dataset contained chest CT images of 861 patients with

COVID-19. The training set was created as a random selection of 731 CT images

and the other 130 were used as a testing set. A medium sharp reconstruction

algorithm with a thickness of 0.625 - 10 mm was used in order to reconstruct

CT images. No additional augmentation of CT images was done. The size of

the minibatch was 2. Encoder-decoder network was employed with 4 encoding

layers and 3 decoding layers. Four building blocks were used: FV block (Fig.

2.11),convolutional block, PASPP block and softmax function. These two parts

were connected through the PASSP block with different dilate rates as can be seen

in Fig. 2.10. All convolution layers used kernels of sizes 3 ⇥ 3 ⇥ 3 each followed

by batch normalization and ReLU activation function. The number of channels is

doubled at each layer during encoding from 64 up to 512 and halved from 512 down

to 64 during decoding. The loss function was the combination of cross-entropy loss

and dice loss. They highlighted feature capturing through the FV block.

FV block consists of 3 branches a contrast enhancement branch, a position-sensitive

branch, and an identity branch. The motivation behind the PASSP block was fact

that infected regions have different sizes. This requires features to be a differ-

ent size as well. Dice similarity coefficient, sensitivity, and precision were used

to evaluate the performance of the model. Authors conducted experiments and

benchmarks with other state-of-the-art models and results have shown that their

model outperformed all models in both tasks, lung segmentation, and infection

segmentation. Other models were FCN, UNet, UNet++, and V-Net.
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Figure 2.10: Architectural overview of COVID-SegNet proposed by Yan et al. [47].
The architecture consists of two parts an encoder and a decoder.

Figure 2.11: Details of FV Block used in COVID-SegNet proposed by Yan et al.
[47]. Idea of FV Block is to enhance the contrast and adjust the intensity in feature
level automatically for different images employing also channel attention.

2.4.5 Improved U-Net: the UNet++ Architecture[18]

Jin et al. proposed model performing classification and segmentation tasks [18].

The model was trained on 1136 training cases (723 COVID-19 positives). Achieved

sensitivity of 0.974 and specificity of 0.922 on the test dataset consisting of also

pulmonary diseases. This model has been deployed in 16 hospitals performing

1300 screenings per day. The dataset covers a variety of different cases such as

samples gathered from different CT equipment, some samples also contained other

diseases. CT images were normalized to (1,1, 2.5) mm using standard interpola-

tion algorithms. Window width and window level were adjusted for each model.
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Dataset augmentation was present, typical augmentation operations were used

such as random flip, zooming, and panning to improve variability. All values were

normalized to [0, 1]. All segmentation was done on the (256, 256, 128) patch which

was also the input image size of the model. Preprocessing step also included lung

segmentation on which model did classification and segmentation.

The model was divided into 2 stages: 3D segmentation and classification. The

model architecture was chosen by empirical tests of different architectures such as

FCN-8s, U-Net, V-Net, and 3D-Unet++ for segmentation tasks and for classifica-

tion task models like DPN-92, Inception-v3, ResNet-50, and Attention ResNet-50.

The 3D-Unet++ model achieved the highest Dice coefficient. Attention ResNet-50

model was chosen as the best model for classification task achieving area under

the curve (AUC) of 0.991. The Dice coefficient was used to evaluate the perfor-

mance in the segmentation task and AUC was used to evaluate performance in the

classification task. Specificity and sensitivity were also measured.

2.4.6 An Ensable Using the nnUNet Architecture[17]

Isensee et al. proposed UNet based pipeline with automatically adjusted parame-

ters from training data [17]. There are 3 types of parameters: fixed parameters,

rule-based parameters, and empirical parameters. Fixed parameters are picked

before and did not change according to input data. Fixed parameters are learning

rate, loss function, architecture template, optimizer, data augmentation, train-

ing procedure, and inference procedure. They used dice loss and cross-entropy

function, SGD optimizer with Nesterov momentum set to 0.99. Rule-based pa-

rameters are calculated based on input data in form of heuristics based on the

expert knowledge of the authors. These parameters included batch size, patch

size, image resampling strategy, and such. The last type of parameters were em-
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pirical ones where the right model or combination of two was picked according to

cross-validation performance. By default, nnUNet generates three different U-Net

configurations, 2D-Unet, 3D-UNet, and cascade 3D-UNet. The cascade 3D-UNet

is the combination of 2 3D-UNets operating in two stages. In the first stage, the

standard encoding-decoding takes place and in the second stage, the outputs from

the first stage are concatenated as one-hot encoding to the full resolution and fur-

ther refined by the second 3D-UNet. They showed that this strategy is suited for

various medical imaging tasks and outperformed specialized pipelines.

2.4.7 Challenge Submissions: Top Performers

Roth et al. summarised the competition results of top 10 participants[38]. Partic-

ipants used fully-automated methods, which all were based on some modified ver-

sion of U-Net[37, 51], a fully convolutional network [27] with skip connections[27,

13]. Most of the participants used the particular U-Net variant the nnU-Net[17],

which was already used in other challenges. Popular segmentation function used

was Dice Loss[31] along with additional cross entropy, top-k[28] and focal loss[26].

The winning segmentation model utilized model ensembling, where predictions are

fused from independently trained models. Majority of methods used 5-fold cross

validation and model ensemble for creating final prediction.

2.4.7.1 Rank 1: "Semi-supervised Method for COVID-19 Lung CT

Lesion Segmentation"

The team of Shishuai et al. used an additional unlabeled dataset for improvement in

model generalization. They sued nnU-Net architecture as a basis for segmentation

network and trained it with labeled data first. After training, they generated the

pseudo lesion masks of annotated and not annotated infected CT images. Lastly,

the model was trained as fully supervised with the original dataset and generated
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pseudo labels.

2.4.7.2 Rank 2: “nnU-Net for Covid Segmentation”

The team of Fabian Isensee et al. also used nnU-Net and used it to implemented

five 3D U-Net configurations. Starting with a low-resolution residual U-Net with

extensive data augmentation and batch normalization. The next four configu-

rations were all high-resolution U-Nets with either residual blocks or extensive

data augmentation. They trained a total of 10 models for each configuration and

created an ensemble with softmax averaging for predictions.

2.4.7.3 Rank 3: "Automated Ensemble Modeling for COVID-19 CT

Lesion Segmentation"

Claire Tang developed U-Net based automated pipeline with data processing and

with various loss functions. During data preprocessing both 2D and 3D were

created. For 3D images, a downsampling technique was used to produce also

low-resolution images. For each dataset, U-Net models were trained. The author

pointed out a 3D cascade U-Net which was firstly trained on low-resolution 3D

images and then it used its prediction to further train a full-resolution U-Net.
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Rank Value ID # Fully
Automated

Extra
Data Pretrained Ensemble Data

Dim.
Network
Arch. Authors

1 2.6 53 3 3 7 7 3D nnU-Net S. Hu et al.
2 6.0 38 3 7 7 3 3D nnU-Net F. Isensee et al.
3 7.7 65 3 7 7 3 2D/3D nnU-Net C. Tang
4 8.4 58 3 7 7 3 3D nnU-Net Q. Yu et al.
5 8.5 31 3 7 7 3 3D nnU-Net J. Sölter et al.

6 9.2 50 3 7 7 3 2D/3D nnU-Net T. Zheng
& L. Zhang

6 9.2 68 3 7 3 7 2D/3D
VGG16
Hybrid
MONAI

V. Liauchuk et al.

8 9.4 95 3 7 7 3 3D nnU-Net Z. Zhou et al.
9 10.6 29 3 7 7 7 3D nnU-Net J. Moltz et al.
10 11.3 15 3 7 7 7 3D U-Net B. Oliveira et al.

Table 2.2: Summary of top-10 participants in the COVID-19 segmentation grand
challenge from [38].

27



Chapter 2. Analysis

28



Chapter 3

Proposed solution

Based on our analysis we chose UNet architecture. It has been widely used and

has provided a solid performance on medical imaging datasets. The ability to

modify and experiment with the bare minimum was our requirement to explore

possible modifications to adjust architecture to our needs. We focused on loss

function modifications and dataset augmentation therefore we wanted to minimize

the number of parameters involved in experiments.

3.1 Research Objectives

We aimed to solve one of the Grand Challenge competitions about volumetric

segmentation of COVID-19 disease inside the lungs. To solve this challenge we set

up 2 research objectives. Dataset preprocessing and loss function tuning.

Objective 1: Spatial Reduction Due to large images with unnecessary data

we wanted to compare the performance of our proposed architectures on the

cropped dataset.
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Objective 2: Loss Function Modification Due to the large class imbalance

which affects the performance of the loss function we wanted to propose an adjusted

loss function for this problem.

3.2 Solution Overview

To achieve both objectives we have set, we created a two-step process. In the first

step, we trained a 2D UNet model for lung detection. We used external dataset[29]

for training 2D U-Net. Next, the whole dataset was cropped by a bounding box

that surrounded the lungs by an axial axis. In the second step, we trained the 3D

UNet model for COVID-19 lesions segmentation on the cropped dataset. Cropped

dataset improved training speed and allowed quicker experiments and iterations.

This high-level overview can be seen on Fig. 3.1. Methods datasets are further

described in further particular sections.

3.3 COVID-19 Dataset - Segmentation Challenge

We worked with the provided dataset of CT volumes of COVID-19 patients from

[35] and participated in the Grand Challenge segmentation task. Dataset consisted

Figure 3.1: Overview of our solution that is divided into two steps. Firstly, crop-
ping the CT image dataset. Secondly, performing COVID-19 segmentation.
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of 199 unenhanced chests CTs. Confirmation of the presence of SARS-CoV-2 was

tested with Reverse Transcription Polymerase Chain Reaction (RT-PCR). Dataset

included ground truth annotations of COVID-19 lesions in the lung. Each dataset

file was in NIFTI file format compressed with gzip. The test set wasn’t publicly

available at the moment of writing. CT images have variable depth sizes, but

width and height (512⇥ 512) are the same across all of them. When we looked at

all CT scans and a calculated ratio of ground truth masks 0 and 1 pixels. There

was 1 positive class (have a disease) to 242 negative class (without disease). A

positive class is rare.

3.4 Dataset Cropping

When we looked closer at the dataset we identified that almost half of the volu-

metric data are irrelevant such as background or other non-lungs regions. Another

observation was that nodule annotations could be sparse and scattered across the

lungs; see Fig. 3.2. In later sections we targeted these smaller regions with loss

function modification to increase performance.

3.4.1 2D Lungs Dataset for Lungs Segmentation

To train our spatial reducing UNet model we used publicly available data hosted

on the Kaggle platform published by K. Mader [29]. As this dataset contained

exactly what we needed to segment lungs from the slice of a CT image. This

dataset contains 267 CT slice as shown examples in Fig. 3.3 and Fig. 3.4. We

set aside 15 slices for the test and the rest split 80% for the training set and the

rest 20% for the validation set. We did not apply any data augmentations to the

dataset.

31



Chapter 3. Proposed solution

Figure 3.2: Example of single slices of lung nodules of 0003 and 0072 patients.
Red area signalizes the ground truth annotation. We can see there can be variance
between annotations resulting in smaller or bigger regions.

3.4.2 Method: using U-Net Model

We approached the problem of volumetric reduction as a lung segmentation prob-

lem. We wanted to train the model on publicly available datasets online with

ground truth masks. Instead of looking for 3D volumetric lung segmentation, we

looked after the 2D dataset to segment lungs per CT slice.

Architecture: 2D UNet We implemented standard 2D UNet architecture with

a number of filters (32, 64, 128, 256, 512). We used the ReLU activation function in

all layers except the output layer. As an output layer, we have chosen the sigmoid

layer. Adam optimizer with a learning rate set to 0.0001 with weight decay set to

0.00001. We trained with a batch size of 4 and up to 40 epochs.

Volume reduction: Slicing lungs out of CT volume We selected 3 middle

slices from the original volume, the middle slice was referred to as the m slice and

additional slices were the m�10 and m+10 slice. Before segmentation, these slices
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Figure 3.3: CT slice example from lungs
CT dataset.

Figure 3.4: Ground truth mask example
from lungs CT dataset.

were rotated by 270 deg due to the lung segmentation model where dataset images

had this exact position. These axial slices were fed into the segmentation model

and the resulting masks were cleaned. The cleaning method consisted of finding

contours smaller than 6000 pixels squared and leaving them out. This proves as a

good heuristic for cleaning resulted masks. In the next stage, the mask was added

together with the XOR operation forming one single XORMask. Next, we found

a bounding box of contents of XORMask which were used to slice the original CT

image. When we were slicing the original CT image only the depth dimension was

preserved. Both width and height were cropped to match the bounding box of the

XORMask. Ground Truth masks were cropped as well to match the XORMask

bounding box. Both CT image and ground truth mask were rotated back to their

default rotation.

After reducing all CT images the dataset size was reduced by 58.9%. Output CT

images weren’t perfectly cropped as some unnecessary background voxels were still

present but all essential data were present after volume reduction.
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3.4.3 Training 2D U-Net

We trained for 40 epochs, we achieved peak dice mean of 0.9168 at 36 epochs and

we used this model for lungs segmentation; see Fig. A.4. When we cropped volume

we had problems with cropped sides to solve this issue we added padding to the

bounding box before cropping. All 70 CT volumes we cropped were examined by

selecting middle and checking if important segment was not cropped; see examples

on Fig. 3.5 and Fig. 3.6.

Figure 3.5: Slice of original CT example
before spatial reduction.

Figure 3.6: Slice of cropped CT example
after spatial reduction.

3.5 Using 3D Lesion Segmentation

To solve the Grand Challenge segmentation task[35] we focused firstly on creating

a baseline model to further improve upon. We built upon the baseline model

created by MONAI Consortium the team behind MONAI framework[32] built

on well known Pytorch framework. This baseline implementation provided all

fundamental blocks such as handling dataset loading and data augmentation. We
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named it CovidSeg.

3.5.1 Dataset Augmentation of COVID19 Dataset

We have already introduced the dataset in Sec. 3.3. Intensity values were clipped

to minimal value of -1000 and maximum 500 as the authors of dataset suggested

to do so; see Fig. 3.7 and Fig. 3.8.

Figure 3.7: Normalized histogram of intensities
[38].

Figure 3.8: Volume size of
COVID-19 lesions [38].

Dataset samples augmentations were re-scaled from original value range into [0, 1]

range. Next during training, we also applied spatial padding to width and height

dimensions omitting depth dimensions to ensure size of at least 192⇥ 192. Next,

we applied random affine transform to slightly alter the scale by 0.1 and rotation

by 0.05rad both of width and height dimension axes with a probability of 15%.

As the next step, we picked random 3 windows of size 192⇥ 192⇥ 16 were picked

as training examples. This allowed us to work with arbitrary input data which we

leveraged in reduced dataset samples. After that, we applied Gaussian noise with

std = 0.01 with a probability of 15% and flipped each axis with a probability of

50%.
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Figure 3.9: Architecture overview of our CovidSeg model we used from MONAI[32]
framework. Numbers above rectangles denoting number of output channels.

3.5.2 Method: using Basic 3D Unet

For network architecture we have chosen standard 3D UNet architecture provided

from MONAI[32]; see Fig.3.9. With the number of channels starting from 32, 32,

64, 128, 256, 32 where 256 is the bridge layer between contracting and expanding

path. We also used dropout with the value of 0.1. Each layer used 3⇥ 3⇥ 3 kernel

size and padding set to 1. As an activation function, we started with ReLU in

each layer. We used sliding window inference with the size of 192⇥ 192⇥ 16 with

an overlap of 50% and replicating padding mode. This inference method took 2

slices at a time.

In every run, we used the Adam optimizer function. The number of epochs was
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100 and the batch size was set to 2. Before calculating loss function on input

was applied softmax function and one-hot encoded. The background channel was

omitted and the loss and also other metrics were calculated only on the positive

class of the second channel. We omitted the background channel during metrics

calculation as the background was majority class and a huge class imbalance was

present.

First experiment: Training with original dataset We started with the

original dataset to create baseline results. What we wanted to achieve with the

first experiments are identifying problems during segmentation and the impact of

larger CT images with more irrelevant data within them.

In this run, we tried the sum of Dice loss and Cross Binary Entropy as a loss

function. We set the learning rate to 0.0001. We used the ReLU activation function

in all layers. In this run, we used original CT images. After 100 epochs the training

resulted in a Dice metric of 0.435 with a maximum peak of 0.464. With an average

of 0.397.

According to the results we further analyzed loss function performance and oppor-

tunities to tweak it to increase performance.

3.5.3 Loss Function Modification

When we looked at inference on the test set we observed a problem with false-

positive and false-negative results. We looked closely at the Dice coefficient used

in Dice + Cross-Entropy Loss function in the first experiment. The Dice coefficient

defined as:

DSC =
2TP

2TP + FP + FN
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The true positive cases drive the result of DSC higher and on the other hand, false

positive and false negative cases aren’t that punishing if present. To counterweight

this imbalance the Tversky Loss function was introduced[40]. Where parameters

↵ and � are used to weight the punishment for false negative and false positive

respectively.

Tversky =
TP

TP + ↵FN + �FP

When we experimented with this function in our settings we got similar results to

DSC because of the large class imbalance. During the training, we want to reward

models for true positives because of their rarity, but we also wanted to reduce false

negative and false positive rates too. We experimented with the idea of adaptive

loss function where the importance of false-negative and false-positive vary as in

already mentioned Tversky Loss, but we did not reach any conclusion. This may

be reexamined in future work.

Another idea that we experimented with is the balancing DSC with Jaccard Index

defined as:

Jaccard =
TP

TP + FN + FP

Our loss function was defined as:

Loss = 1� DSC + Jaccard

2
+ CELoss (3.1)

During the training we observed that our loss function performed better on sen-

sitivity metric and worse on mean dice; see Fig. 3.11 and Fig. 3.12. This loss
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Figure 3.10: On the left side we created a ground truth image, on the right side is
prediction. Dice coefficient calculated on these images equals to 0.9964.

function modification improved upon the Dice coefficient problem. When Dice

coefficient is used upon segmentation with one larger region and smaller regions

that are spread out. The Dice loss function will quickly learn to segment larger

regions but will have a harder time segmenting the smaller ones. Our modification

was aimed at the problem with smaller regions and punished the Dice coefficient

further to improve performance. To see this problem; see Fig. 3.10. As Dice

favors true positive results it skews results. What may seem as almost perfect

segmentation is in reality lacking.

3.5.3.1 Training With Cropped Dataset

After we created the baseline of our work we cropped our samples of 60 CTs (48

train and 12 validation samples) and have done another run of experiments with

the same networks and parameters, but on the cropped dataset. We used the

same method of dataset augmentation and processing, network architecture, and

loss functions.

Firstly we trained with standard loss function DSC + CE. After 100 epochs the

training resulted in Mean Dice metric 0.400 with maximum value of 0.413. With
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Figure 3.11: Comparison of performance
of our loss function (purple) and Dice
Loss + Cross Entropy Loss (green) on
mean dice metric. Both models were
trained on cropped dataset.

Figure 3.12: Comparison of performance
of our loss function (purple) and Dice
loss + Cross Entropy Loss (green) on
sensitivity metric. Both models were
trained on cropped dataset.

an average of 0.392; see Fig. 3.13. The validation sensitivity metric resulted in

0.598 with maximum value of 0.711 and an average of 0.594; see Fig. 3.14. For

validation loss; see Fig. A.1.

Secondly we trained with our modified loss function (Eq. 3.1) After 100 epochs

the training resulted in Dice metric 0.423 with the maximum value of 0.466. With

an average of 0.431; see Fig. 3.13. The validation sensitivity metric resulted in

0.734 with maximum value of 0.786 and an average of 0.694; see Fig. 3.14.

Preliminary Results: Overview We compared all runs together and applied

them to smooth in form of a running average of 10 values. Our loss function per-

formed worse on the mean dice metric; see Fig. 3.15. By contrast, the performance

on the sensitivity metric was better in all cases than Dice Loss + Cross-Entropy

Loss; see Fig. 3.14. The validation loss in case of our loss function is converging
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Figure 3.13: Comparison of performance
of our loss function (blue) and Dice Loss
+ Cross Entropy Loss (yellow) on mean
dice metric. Both models were trained
on cropped dataset.

Figure 3.14: Comparison of performance
of our loss function (blue) and Dice loss
+ Cross Entropy Loss (yellow) on sensi-
tivity metric. Both models were trained
on cropped dataset.

worse the one explanation could be large class imbalance and the punishment from

false positive and false negative cases slows down the training; see Fig. A.2.

3.5.4 Further Addressing the Class Imbalance

The class imbalance problem was explored in the 1990s by Anand et al. [2] where

authors showed that the majority class negatively affected the backpropagation

algorithm. The majority class had a higher impact on gradient updates leading

to reduced error of the majority class but the increasing error of the minority

class.

We use the same grouping of methods as authors Johnson and Khoshgoftaar [19] in

their survey paper on this topic. They grouped methods as data-level, algorithm-

level, and hybrids.
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Figure 3.15: Performance comparison
between all experiments on mean dice
metric smoothed with running average
over last 10 values.

Figure 3.16: Performance comparison
between all experiments on sensitivity
metric smoothed with running average
over last 10 values.

Data-level methods focus on the dataset and try to balance samples of the dataset

or change underlying distribution with methods like random over-sampling (ROS)

or random under-sampling (RUS) [10, 7, 36, 16]. Where ROS duplicates examples

from the minority class and RUS discards random examples from the majority

class. The focus was on minimizing the overfitting problem that naturally stems

from the highly imbalanced dataset were learning the majority class yields accuracy

of the majority class.

Algorithm-level methods focus on adjusting the learning process on the level of

loss function or architecture. Such a concept was used by Lin et al. where they

proposed focal loss which weights the classification loss based on the prediction

[26]. They introduced a loss function that adds a factor (1� pt)� to the standard

cross-entropy loss function. Whenever the model incorrectly classifies example the

pt is small and the term is closer to 1; see Eq. 3.2[26]. As the authors pointed out
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the � reduces the loss contribution from easy to classify examples and extends the

range in which an example results in a lower loss.

FL(pt) = �(1� pt)
�log(pt) (3.2)

Dang et al. defined class imbalance problem as a cost-sensitive classification prob-

lem [44]. To address this problem they used the so-called cost matrix which en-

coded penalties of classifying samples from one class as another. This cost matrix

was used as a part of the loss function where larger the value in the cost matrix

meant a larger penalty.

Khan et al. proposed a loss function by estimating the uncertainty of each class

[23]. Khan et al. proposed a method of calculating loss function by estimating the

uncertainty of each class. Authors based this method on extending classification

boundaries further away from a more uncertain class to avoid over-fitting and

modeled each sample as multi-variate Gaussian distribution with a mean vector

and covariance matrix.

The last method of dealing with class imbalance is the combination of the previous

two. We used this strategy as our dataset had a large class imbalance. The

original dataset had a ratio of 1 positive voxel to 242 negatives and the cropped

dataset we later used during training had a ratio of 1 positive voxel to 76. And

we also modified the loss function with terms that penalize the model as the class

imbalance is higher.

We experimented with the information on the balance ratio and we decided to

create a single number that represented discounting factor �; see Eq. 3.3. In search

of an exponential discounting factor as in Focal loss, we naturally constructed such

an equation based on logarithms.
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� = log (� log↵) (3.3)

The base of the logarithm can be also taken into account, we used a natural

logarithm. The � for our dataset is 1.4567. We used this parameter to introduce

another cost to our existing loss function.

We also created an extension of our first loss function the sum of Jaccard index

and Dice Loss and divided by 2 on the same principle. Adding Dice coefficient to

the power of � and averaging this sum Eq. 3.4.

L =
DSC +DSC�

2
+ CE (3.4)

DiceDiceLoss function further generalizes the principle of using class imbalance

ratio to apply a global penalty for incorrectly classified classes. This helped during

training compared to standalone Dice Loss.

We did experiments to determine whether this heuristic � calculation is superior to

other numbers and we found out in small series of experiments, that the higher the

gamma, the better performance we achieved; see Fig. 3.17. The � = 2.2 yielded

the best performance and we chose this value for the evaluation process.

3.5.4.1 Balanced Dataset Splits

When we split the dataset into training, validation, and testing set we ensured

that all these sets have had a similar distribution of classes within them. We

accomplished that with an iterative algorithm that shuffled the dataset until ratios

of positive classes to negative between each set were smaller than 0.001.
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Figure 3.17: Experiments with loss function modification (Eq. 3.4) with different
� values. Smoothing function was applied.

Adjusted Loss Function: Summary To minimize the impact of high-class

imbalance we applied the hybrid method. Firstly we cropped the dataset to contain

only lungs. Secondly, we modify the loss function to be more punishing during

model training. These results led us to modify DiceDiceLoss function which uses

� parameter to improve the function. We further evaluated DiceDiceLoss function

and compared it to baseline DiceFocalLoss.
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Evaluation

To evaluate our models, we used the standard evaluation technique K-Fold cross-

validation for model performance estimation. We chose 3 folds for each model

configuration and compared the results. Each fold consisted of 120 training samples

and 60 test samples. The number of maximum epochs was set to 150 with an early

stopping with patience set to 10. When loss on the test set wasn’t improving in

10 consequent epochs the particular fold was stopped. The number of folds was

determined by hardware and time constraints. The average run-time of a single

cross-validation run was 38.36 hours. As for baseline, we run the same cross-

validation configuration with DiceFocalLoss function from MONAI[32] framework

with default parameters.

4.0.1 Robustness

Our model may accept any CT as we applied data augmentation that ensures size

at least 192 ⇥ 192 and preserves depth dimension. We did not implement input

data validation as we worked only with a provided dataset that was prepared for

training. Before we started our experiments we ensured that the dataset was with-
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out flaws that could affect results. We manually examined the datasets in both the

COVID segmentation pipeline and dataset cropping pipeline before training.

4.0.2 Evaluation Metrics

We chose Precision(Eq. 4.1), Sensitivity(Eq. 4.2), Dice coefficient(Eq. 4.3) to bet-

ter understand model performance with a particular loss function. We omitted

specificity due to ignoring the majority class (background) during metric calcula-

tion.

Precision =
TP

TP + FP
(4.1)

Sensitivity =
TP

TP + FN
(4.2)

Dice =
2TP

2TP + FN + FP
(4.3)

4.0.3 Quantitative Evalution

After performing a 3-fold cross-validation we gathered evaluation metrics per fold.

In the end, averaging every metric across all folds gave us an average model perfor-

mance on each metric. Training during cross-validation with time was less and less

stable, but validation loss steadily decreased. Our model outperformed baseline;

see Fig. 4.2.

Our model performed better on dice, precision with an average of 0.5377 and

0.6159; see Tab. 4.2. We used an independent t-test to evaluate these metrics and

both resulted in statistically significantly higher with a p-value of 0.001 for dice

48



Chapter 4. Evaluation

Fold Dice Sensitivity Precision Epochs
1 0.4772 0.8739 0.5390 70
2 0.5002 0.9108 0.5320 91
3 0.4833 0.9090 0.5343 78

mean 0.4869 0.8979 0.5351 79.6667

Table 4.1: Summary table of 3-fold cross validation of DiceFocalLoss configuration.

Fold Dice Sensitivity Precision Epochs
1 0.5336 0.7796 0.6212 102
2 0.5363 0.8202 0.6091 92
3 0.5432 0.7843 0.6175 92

mean 0.5377 0.7947 0.6159 95.3333

Table 4.2: Summary table of 3-fold cross validation of DiceDiceLoss configuration.

metric and 2.0e�5 for precision. Due to a low number of folds the power of these

tests is low. Baseline was better in sensitivity with an average values of 0.8979;

see Tab. 4.1.

4.0.4 Test Set Evaluation

To evaluate our prototype on the test set we picked the best performing model

from each cross-validation run. After that, we run an evaluator with the test set as

input for each model. Finally, we averaged these values which gave us an average

performance as each model from cross-validation was trained on a different part

of the dataset. Our test set contained 19 CT images that our model have never

seen before. We put the results of our test set evaluation compared to baseline

and other participants in the challenge in Tab. 4.3.

We also put our results into relation with the top 3 competitors from COVID-

19 Lung CT Lesion Segmentation Challenge[38]. This comparison was just for

demonstration purposes as we did not get access to the same datasets. The training

datasets were similar, but the testing dataset used in Tab. 4.4 were different. They
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Dice mean std median
DiceDice 0.5752 0.0182 0.5839
DiceFocal 0.5032 0.0059 0.5039
Precision

DiceDice 0.6002 0.0676 0.5715
DiceFocal 0.5161 0.0303 0.5082
Sensitivity

DiceDice 0.5409 0.034 0.5589
DiceFocal 0.4735 0.0191 0.4696

Table 4.3: We picked the best model from each cross validation run and we made
evaluation run for each model and averaged results.

Model / Competitor mean std median
DiceDice 0.5490 0.1443 0.5321
DiceFocal 0.5167 0.1492 0.4825

Rank 1. Team (see Sec. 2.4.7.1) 0.5980 0.2640 0.7000
Rank 2. Team (see Sec. 2.4.7.2) 0.5930 0.2580 0.6770
Rank 3. Team (see Sec. 2.4.7.3) 0.5590 0.2910 0.6860

Table 4.4: Dice coefficient comparison table with our results and results from
challenge[38]. These results compared relative performance as conditions during
evaluation and training weren’t same as ours.

tested on 46 CT images and we did on 19. These images weren’t the same. We

showed these results to get a general idea of where performance was on the Dice

metric. Therefore we couldn’t draw any conclusions from this comparison.

We statistically tested with independent t-test equality of means of DiceDice and

DiceFocal results; see Tab. 4.4. With an alternative hypothesis of DiceDice mean

as greater. We rejected the null hypothesis with a resulting p-value of 0.003.

4.0.5 Qualitative Evaluation

We picked slices from the test set and depicted differences between models. As we

run the inference loop for each example we also calculated the Dice coefficient for

each example. According to these results, we picked the worst, and average the
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Figure 4.1: In first row are samples from our model using DiceDiceLoss function
and below are inference examples from model using DiceFocal Loss. Red is model
segmentation, green is ground truth and yellow signalizes correct segmentation.

best predictions. We marked ground truth with green color and the model’s seg-

mentation with red. Overlapping regions indicated correct segmentation resulted

in yellow color. We can see there are differences between the performance in Fig.

4.1.

We looked closer to the value distribution of positive classified values and we found

out that our model and baseline in the worst-case failed to predict the underlying

distribution and classified wrongly all voxels on a depicted slice in Fig. 4.1. In the

average case, distribution was hard to learn for our model due to similar values in

positive and negative cases. The interval from -800 to -600 has roughly 4 times

more values than ground truth segmentation. That means our model tried to

classify these values as positive ones, but in reality, they were negative; see Fig.

A.3. In the best case, both models predicted well across all CT slices achieving an

above 0.80 dice score.
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Figure 4.2: Results of 3-fold cross validation. Each graph shows averaged results
for each epoch.

52



Chapter 4. Evaluation

53





Chapter 5

Conclusion

Developing a system to detect COVID-19 disease was a challenging task on mul-

tiple levels. We run more then 70 experiments total as we progressed through this

work. We encountered a memory problem and we proposed solutions to partially

eliminate these tighter constraints. We cropped the dataset which allowed us to

train and experiment with available hardware and also speed up the training pro-

cess. Cropping the dataset along the axial axis consisted of training the 2D UNet

model on a publicly available dataset of annotated CT lung slices. Finally, the

cropped dataset was reduced in size by 58.9%.

As our dataset contained highly imbalanced data we explored the loss functions

which perform well in this regard. After the first experiment, we found work-

ing averaging the Dice coefficient with the Jaccard index which slightly improved

performance. After that, we further improved the loss function to the DiceDice

loss function with the parameter to account for class imbalance. After numer-

ous experiments, we proposed loss function modification as we wanted further

explore the possibilities of performance improvement through loss function mod-

ification. We experimented with the idea of counterbalancing loss function with
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exponential terms to punish inaccurate classifications. After performing 3-fold

cross-validation and comparing our loss function with Dice Focal loss with default

parameters results showed that our model performed better on dice and preci-

sion metrics with statistical significance. We evaluated the best models from each

cross-validation run on the test set of CT images. Our DiceDice model resulted

in mean = 0.5490, std = 0.1443 and median = 0.5321 on Dice coefficient against

baseline mean = 0.5167, std = 0.1492 and median = 0.4825. We also put these

results into relation with competition[38] results which indicated a good enough

performance of our model. As the best competitor achieved 0.5980 Dice coefficient

with std = 0.2640 and median = 0.7000. The evaluation process of the com-

petition was not the same as ours as they used a slightly larger testing dataset

with different CT images. We concluded our results as good enough in relation to

the competition results as weren’t far behind in the Dice coefficient metric. We

also pointed out the fact that we used the most basic UNet model without special

optimizations and were solely focused on dataset augmentation and loss function

modifications.

There are two main branches of our work that may be explored further loss function

modification based on dataset class imbalance and architecture tuning with respect

to class imbalance. We showed that with a simple model good enough results can

be achieved. Our model may be further improved by utilizing either other deep

learning blocks or building more deeper network. Imbalanced data are prevalent

and we need more tools to handle this problem.

Our limitation was the runtime of running experiments and high hardware re-

quirements. There is an opportunity to explore our model performance after more

cross-validation folds.
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Resumé

Vznik pandemickej situácie v roku 2019, sposobená ochorením COVID-19, podni-

etila svet k výskumu vakcíny a metód ako tento vírus odhaliť. Objavili sa nové

výzvy v oblasti medicíny, vďaka ktorým vznikli medzinárodne výzvy[38] na de-

tekciu ochorenia COVID-19. Výzvy a súťaže sprístrupnili nazhromaždené dáta

verejnosti a výskumníkom. My sme sa do tejto výzvy[38] zapojili, aby sme vytvo-

rili riešenie na nimi poskytnutých dátach. V analytickej časti sme zmapovali mo-

mentálny stav v tejto výskumnej oblasti a zhrnuli dôležité prístupy. Na základe

analytickej časti sme sa rozhodli postaviť náš prototyp na U-Net architektúre.

V ďalšej časti práce sme navrhli riešenie na protyp, kde sme sa držali našich 2

výskumných cieľov - úprava datasetu a úprava stratovej funkcie. V poslednej časti

práce sme naše riešenie overili na testovacoch datasete.

V našej práci sme sa venovali problematike segmentácie pľúcnych lézií zo snímok

CT pacientov s týmto ochorením. Cieľom práce bolo vytvoriť prototyp na seg-

mentáciu týchto lézií a vyhodnotiť výsledky. V analytickej časti práce sme an-

alyzovali rôzne relevantné architektúry ako sú U-Net[37], V-Net[31] a ich rôzne

variacie [17, 51], na źaklade čoho sme sa rozhodli využiť túto architektúru na rieše-

nie nášho problému. U-Net architektúra je stále veľmi známa a často využívaná

v oblasti medicínskej domény. Počas analýzy oblasti segmentácie CT snímkov,

ktoré môžeme označiť aj ako 3D dáta, sme narazili na problém s veľkosťou a
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nevyváženosťou pozitívnych a negatívnych segmentačných tried. Veľkosť CT snímok

sa prejavila pri práci s pamäťou počas výpočtov na grafickej karte. Toto obmed-

zovalo rýchlosť trénovania a teda aj našu rýchlosť tvorby prototypu, keďže bolo

trénovanie časovo náročné a tým aj iterácie tvorby prototypu. Na základe prvých

experimentov sme našu pozornosť zamerali na modifikáciu samotného datasetu

a redukovanie priestorovej veľkosti CT snímok a v druhom rade sme upravovali

výlučne stratovú funkciu, pričom sme nemenili architektúru a neoptimalizovali

jej hyper-paramatre. Sústredili sme sa najmä na úpravu stratovej funkcie, aby

sme maximalizovali efektívnosť na našich dátach. Následne sme pozorovali, aký

vplyv má úprava stratovej funkcie a zredukovanie priestorovej veľkosti datasetu

na výsledky.

Na riešenie problému sme zostrojili prototyp pomocou vývojového rámca MONAI[32].

Problém sme rozdelili na dve časti: orezanie CT snímok z datasetu a segmentá-

cia COVID-19 pľúcných lézií. Využili sme teda 2 hlboké neurónové sieťe. Na

orezanie CT snímok sme využili 2D U-Net, ktorú sme natrénovali na axiálnych

výrezoch CT snímkov z verejne dostupných dát aj s maskami pľúc[29]. Následne

sme z každého CT snímku vybrali 3 stredné výrezy, na ktorý sme vysegmento-

vali pľúca a zostrojili sme z nich orezovú masku pozdĺž axialnej osi. Táto maska

bola očistená o malé artefakty pomocou tradičných metód počítačového videnia.

Následne sme pomocou tejto masky orezali celý CT snímok pozdĺž axialnej osi. Vo

výsledku sme mali snímky rôznych veľkostí so zachytenou oblasťou pľúc. Následne

sme na experimentovanie využili tento orezaný dataset, ktorý mal o 58.9% menšiu

veľkosť ako pôvodný dataset. Úpravu stratovej funkcie sme prispôsobili k našej

úlohe a datasetu. Vzhľadom na nerovnosť jednotlivých tried sme využili samotný

pomer na odhad parametra �, ktorý sa v stratovej funkcií nachádza, aby sme

generalizovali využitie našej stratovej funkcie aj na iné datasety. Tento param-

eter bol inšpirirovaný z práce, ktorá predstavila Focal loss[26]. Stratová funkcia
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mala tvar L = DSC+DSC�

2 + CE. Kde DSC je Dice koeficient a DSC� je trest,

ktorý v sa pomocou priemeru prejaví v stratovej funkcií pri chybnej segmentácií.

Tento trest sa následne prejavil v priemere signifikantne lepšej segmentácii o 0,07

na metrike Dice voči porovnávanej funkcií stratovej funkci DiceFocalLoss so zák-

ladným nastavením na testovacích dátach. Na vyhodnotenie sme použili metódu

krížovej validácie, aby sme čo najviac potlačili zaujatosť trénovacích a testovacích

dát. Zvolili sme 3-krížovú validácie, kde v každej časti bolo 120 trénovacích a

60 testovacích vzoriek. Tým sme dostali 3 najlešie modely, ktoré sme následne

ešte použili na zvyšných 19 vzoriek, ktoré slúžili ako testovacie dáta. Vyhodnotli

sme výsledky a záver ich dali do relácie s výsledkami zo súťaže, keďže sme nemali

prístup k testovacím dátam ako ostatní súťažiaci.

V práci sa nám podarilo dosiahnuť stanovené výskumné cieľe. Zkonštruovaným

prototypom sme potvrdili prínos orezania vstupných dát a úpravu stratovej funkcie

na náš dataset. Upravená stratová funkcia signifikantne zlepšila výsledok voči

porovnávanej funkcií. Z čoho vyplynulo, že má zmysel optimalizovať a prispô-

sobovať stratovú funkciu na náš problém pre dosiahnutie lepších výsledkov. Tiež

chceme zdôrazniť orezanie vstupného datasetu, čo malo tiež pozitívny vplyv na

rýchlosť učenia a pracovanie s datasetom v kontexte náročnosti na grafickú pamäť.

Tým, že sme vybrali tú najzákladnejšiu 3D U-Net architektúrú, ktorú sme v

priebehu experimentov nemenili, môžeme konštatovať, že experimentami s ar-

chitektúrou by sa dalo výsledky zlepšíť ešte viac. Optimalizácia architektúry,

hyper-parametrov, ale bolo mimo nášho výskumného rámca a zamerania.

Našim prínosom bolo definovanie metódy na orezávania dát a aj samotný odhad

parametra � z nerovnosti dát, ktorý sa dá využiť na podobných datasetoch, kde

veľkosť dát a nerovnosť sťažuje proces učenia. Náše metódy sú aplikovateľné s

malými úpravami aj na iné datasety, ktoré obsahuje CT snímky hrudníka. Taktiež
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je možné využiť nami definovanú stratovú funkciu na iných problémoch a upraviť

si ju podľa potrieb.
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